Families of Orthogonal Two-dimensional Wavelets
نویسنده
چکیده
We construct orthonormal wavelet bases of L2(IR) with compact support for dilation matrices of determinant 2. The key idea is to describe the set H2 of all two-dimensional (2D) scaling coefficients satisfying the orthogonality condition as an implicit function. This set includes the scaling coefficients for induced 1D wavelets. We compute the tangent space of H2 at HN , the scaling coefficients for induced 1D Daubechies wavelets. The structure of the tangent space allows us to build nonseparable wavelets by starting at HN and tracing H along its tangent lines. Various families of compactly supported orthogonal 2D wavelets for the quincunx grid are explicitly given.
منابع مشابه
Two-dimensional Linear Phase Orthogonal Filter-banks and Wavelets
Two-dimensional compactly supported, orthogonal wavelets and lter-banks having linear phase are presented. Two cases are discussed, wavelets with twofold symmetry (centrosymmetric), and wavelets with four-fold symmetry that are symmetric (or anti-symmetric) about the vertical and horizontal axes. We show that imposing the requirement of linear phase in the case of factorable wavelets, imposes a...
متن کاملTwo-dimensional orthogonal filter banks and wavelets with linear phase
Two-dimensional (2-D) compactly supported, orthogonal wavelets and filter banks having linear phase are presented. Two cases are discussed: wavelets with two-fold symmetry (centrosymmetric) and wavelets with four-fold symmetry that are symmetric (or anti-symmetric) about the vertical and horizontal axes. We show that imposing the requirement of linear phase in the case of order-factorable wavel...
متن کاملOn the Zeros of Daubechies Orthogonal and Biorthogonal Wavelets
In the last decade, Daubechies’ wavelets have been successfully used in many signal processing paradigms. The construction of these wavelets via two channel perfect reconstruction filter bank requires the identification of necessary conditions that the coefficients of the filters and the roots of binomial polynomials associated with them should exhibit. In this paper, orthogonal and Biorthogona...
متن کاملSolving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions
In this paper, the two-dimensional triangular orthogonal functions (2D-TFs) are applied for solving a class of nonlinear two-dimensional Volterra integral equations. 2D-TFs method transforms these integral equations into a system of linear algebraic equations. The high accuracy of this method is verified through a numerical example and comparison of the results with the other numerical methods.
متن کامل